
Profiling an Architectural Simulator
Nedasadat Taheri, Alexander Manely, Ahmni R. Pang, and Mohammad Alian

University of Kansas

Abstract—In this work we set out to answer the following
two questions: (1) where are the bottlenecks in a state-of-the-art
architectural simulator? (2) How much can we make architectural
simulations run faster by tuning simple system configuration?
We choose gem5 as the representative architectural simulator,
run several simulations with various configurations, perform a
detailed Top-Down analysis of the gem5 source code, and tune
system settings for running simulations more efficiently.

I. INTRODUCTION

Software-based simulation is the backbone of computer

architecture research and development. Since the inception

of computer architecture as a field, many software-based

architectural simulators has emerged. Currently, various ar-

chitectural simulators are in-use by academia and industry

for modeling different aspects of future computing platforms.

gem5 [1], Sniper [2], MARSSx86 [3], and ZSim [4] are just a

few examples of architectural simulators with currently active

communities.

In this paper, we profile gem5 code and perform a detailed

Top-Down [5] architectural analysis of gem5 execution to

find the bottlenecks in the latest gem5 release. We use our

profiling insights to perform simple system tuning to improve

the performance of gem5 simulations.

This work is the first step towards better understanding

the characteristics of gem5. Our major contributions in this

paper are to answer the following questions: Where are the
bottlenecks in running gem5 on a Xeon server? Our results
show that gem5 is extremely front-end bound with large iCache

and iTLB miss rates. Due to the huge code size, irregularity, and

abundance of virtual functions and runtime polymorphism in

the source code, there is no particular hot function or code block

in gem5, the decoder unit in the out-of-order processor is under

extreme pressure for supplying μOps for the back-end, and
there are large miss prediction and resteer overhead in the front-

end. How much can we make gem5 run faster by adjusting
system configuration and runtime tuning? We show how
backing gem5’s address space using huge pages can improve

simulation speed and energy efficiency. Our results show that

enabling huge pages for gem5 simulations can improve the

simulation speed by up to 27%.

II. METHODOLOGY

In this paper, we use gem5 as the representative architectural

simulator and run simulation with various CPU type, number

of CPU, and memory size. We use the following CPU types:

AtomicSimpleCPU (Atomic), TimingSimpleCPU (Timing), In-
order CPU (Minor), Out-of-order CPU (O3).
Table I shows the processor configuration when using

Atomic, Minor, and O3 CPU models. We run full-system

simulations with Linux kernel 5.4.0 and Linaro 7.5.0 toolchain.

TABLE I: Simulation configuration.

Parameters Values

Core freq: 2GHz
Superscalar 3 ways
ROB/IQ/LQ/SQ entries 384/128/128/128
Int & FP physical registers 128 & 192
Branch predictor/BTB entries BiMode/2048
Caches (size, assoc): I/D/L2 32KB,2/64KB,2/2MB,16ways
L1I/L1D/L2 latency,MSHRs 1/2/12 cycles, 2/6/16 MSHRs
DRAM/mem size DDR4-3200-8x8/1, 2, 4GB
Operating system Linux Linaro (kernel 5.4.0)

We refer to the experiments’ configurations throughout the

paper using a triple format as follows: (CPU Type,Number
of CPUs,Memory Size). For example, (o3,2,4GB) simulates a
dual-core O3 CPU with 4GB of DRAM.

Workloads. We simulate the following workloads on gem5:
boot-exit: Boot Linux on gem5 and immediately exit.
parsec: We use several applications within the Parsec
benchmark suite [6].

Physical Server Configuration. We run experiments on Dell
Precision 7920 towers with Intel Xeon Gold 6242 CPUs, 20

physical cores (40 hardware threads), and 6 DIMMs of 16 GiB

DDR4-3200 MHz (96GiB). We used the VTune profiler [7] for

accessing the processor performance counters and performing

the Top-Down analysis [5].

III. PROFILING GEM5

A. Function Diversity

As shown in Fig 1, there is no killer function inside the

gem5 source code, that optimizing it can significantly improve

the simulation time. As we increase the complexity of the CPU,

the CDF of individual function execution time gets more flat;

meaning that the hotness of individual functions gets lower.

This is not surprising since as the complexity of simulation

increases, more simulation objects get activated in each event

to more accurately model the complexity of the hardware.

Fig. 1: Top 50 hottest functions in gem5 simulating parsec with
different CPU types.

233

2022 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)

978-1-6654-5954-9/22/$31.00 ©2022 IEEE
DOI 10.1109/ISPASS55109.2022.00032

20
22

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
Pe

rf
or

m
an

ce
 A

na
ly

si
s o

f S
ys

te
m

s a
nd

 S
of

tw
ar

e
(I

SP
A

SS
) |

 9
78

-1
-6

65
4-

59
54

-9
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
IS

PA
SS

55
10

9.
20

22
.0

00
32

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on February 16,2023 at 02:36:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Top-level bottleneck breakdown of gem5.

Fig. 3: Front-end bound cycles breakdown of gem5.

Therefore, more diverse functions get called when simulating

with O3 CPU type compared with simpler CPU models. The

total number of functions called throughout the simulation for

the results shown in Fig. 1 are 1749, 3697, 4923, 6425 for

Atomic, Timing, Minor, and O3 CPU types, respectively.

B. Microarchitectural Analysis

Figure 2 illustrates Top-Down analysis of gem5 simulating

various workloads/configurations. Top-Down analysis splits the

machine cycles into four categories: retiring, front-end bound,

bad speculation, and back-end bound. We observed 20-30% of

cycles retire instructions across different gem5 simulations. This

is a relatively high retiring percentage compared to conventional

workloads. For example, the average retiring cycle percentage

for SPEC 2006 and Warehouse Scale (WSC) workloads is

less than 20% and 15%, respectively [8]. However, the front-

end bound and bad speculation is much higher relative to

conventional workloads. On the other hand, the back-end bound

cycles are lower than that of conventional workloads. The small

dynamic working set size and temporally slow memory access

to this working set results in having predictable data cache

accesses from gem5 that can be efficiently captured by the

hardware prefetchers or overlapped in the out-of-order engine

of the modern processors. Also, the front-end bound cycles for

gem5 are in the 20–33% range, even higher than that of WSC

(large-scale services) workloads.

Figure 3 shows the classification of the front-end bound

cycles between front-end bandwidth and latency. The main

reasons for bandwidth and latency bound cycles are inefficiency

in instruction decoding and iCache/iTLB misses, respectively.

As shown in Fig. 3, simpler CPU models are more skewed

toward bandwidth bound and as the level of CPU detail

increases, the front-end becomes more latency bound. This can

be explain by the fact that as the complexity of the CPU model

increases, gem5 touches more simulation object binaries for

processing each event. Therefore, the instruction cache footprint

increases with the CPU model complexity and consequently

gem5 becomes more front-end latency bound.

Along with iCache and iTLB overheads, we see a huge

increase in the branching-related overhead when using O3

and Minor CPUs. The aggregated branching overhead for

O3 PARSEC and Minor PARSEC is 5.6× and 4.1× higher

than that of ATOMIC PARSEC. This is inline with the fact

that increasing the CPU model’s complexity results in more

function calls, parameter checks, and event generation and

activation. These in turn increase the branch density of the

code and contribute to the large branch overhead and increase

of hard to predict branches.

IV. IMPROVING SIMULATION EFFICIENCY

As discussed in detail in Sec. III-B, due to the large

instruction footprint of gem5, we observe a lot of cycles stalled

on iTLB misses while running gem5 simulations. A simple

solution to the iTLB misses is to use huge pages to back gem5

code/text. Linux supports Transparent Huge Pages (THP) [9]

that is a feature that provides transparent huge page allocation

for user applications. This means that THP does not require

applications to be modified or even be linked to a library at

runtime. However, the current THP implementation only works

with anonymous memory mappings (i.e., the memory that is not

backed by the file system such as implicit memory allocation

in the heap and stack) and tmpfs/shmem. Therefore, THP does

not back the code (text memory segment) of an application

binary using huge pages. We use libhugetlbfs [10] that allows

applications to back text, data, dynamically allocated memory,

and shared memory with 2MB or 1GB huge pages. Unlike

THP, libhugetlbfs requires linking applications at runtime to

the libhugetlbfs library. The libhugetlbfs library will intercept

the memory allocation calls from the application and use huge

pages if the allocation size matches the huge page granularity.

Figure 4 shows the simulation time when using huge

pages, normalized to baseline gem5. As shown, this simple

optimization, without any source code modifications, improves

the simulation time by up to 27% across the board.

V. CONCLUSION

In this work, we performed a detailed Top-Down microar-

chitectural analysis on gem5. Our analysis reveals three main

bottlenecks in gem5 execution: (1) high iCache and iTLB

misses, (2) high branch resteer overheads, and (3) extremely

Fig. 4: Normalized simulation time when backing gem5 code

with huge pages.

234

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on February 16,2023 at 02:36:35 UTC from IEEE Xplore. Restrictions apply.

low μOp cache utilization. These bottlenecks are the result
of huge code size, cold code execution, and extensive use

of virtual functions, and polymorphism throughout the gem5

source code. Simply backing up gem5 source code using huge

pages provides up to 27% reduction in simulation time.

REFERENCES

[1] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH computer architecture news, vol. 39, 2011.

[2] W. Heirman, T. Carlson, and L. Eeckhout, “Sniper: Scalable and accurate
parallel multi-core simulation,” in 8th International Summer School on
Advanced Computer Architecture and Compilation for High-Performance
and Embedded Systems (ACACES-2012). High-Performance and
Embedded Architecture and Compilation Network of . . . , 2012.

[3] A. Patel, F. Afram, and K. Ghose, “Marss-x86: A qemu-based micro-
architectural and systems simulator for x86 multicore processors,” in 1st
International Qemu Users’ Forum, 2011.

[4] D. Sanchez and C. Kozyrakis, “Zsim: Fast and accurate microarchitec-
tural simulation of thousand-core systems,” ACM SIGARCH Computer
architecture news, vol. 41, 2013.

[5] A. Yasin, “A top-down method for performance analysis and counters
architecture,” in 2014 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2014.

[6] C. Bienia and K. Li, “Parsec 2.0: A new benchmark suite for chip-
multiprocessors,” in Proceedings of the 5th Annual Workshop on
Modeling, Benchmarking and Simulation, June 2009.

[7] “Intel® vtune™ profiler,” https://www.intel.com/content/www/us/en/
developer/tools/oneapi/vtune-profiler.html#gs.jescps, 2021.

[8] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley,
G.-Y. Wei, and D. Brooks, “Profiling a warehouse-scale computer,”
in Proceedings of the 42nd Annual International Symposium on
Computer Architecture, ser. ISCA ’15. New York, NY, USA:
Association for Computing Machinery, 2015. [Online]. Available:
https://doi.org/10.1145/2749469.2750392

[9] A. Arcangeli, “Transparent hugepage support,” in KVM forum, vol. 9,
2010.

[10] “libhugetlbfs,” https://github.com/libhugetlbfs/libhugetlbfs, Accessed Dec.
2021.

235

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on February 16,2023 at 02:36:35 UTC from IEEE Xplore. Restrictions apply.

